
Technology Guides T1 Hardware
T2 Software
T3 Data and Databases
T4 Telecommunications
T5 The Internet and the Web
T6 Technical View of System Analysis and Design

�

T E C H N O L O G Y G U I D E

2
Software

T2.1
Software Fundamentals and

Types

T2.2
Application Software

T2.3
Systems Software

T2.4
Programming Languages

T2.5
Software Development and

CASE Tools

T2.6
Software Issues and Trends

T2.1

t02.qxd 01/25/2005 07:59PM Page T2.1 EQA

T2.2 TECHNOLOGY GUIDE SOFTWARE

Computer hardware cannot perform a single act without instructions. These
instructions are known as software or computer programs. Software is at the
heart of all computer applications. Computer hardware is, by design, general
purpose. Software, on the other hand, enables the user to tailor a computer to
provide specific business value.

Software consists of computer programs, which are sequences of instructions
for the computer. The process of writing (or coding) programs is called program-
ming, and individuals who perform this task are called programmers.

Unlike the hardwired computers of the 1950s, modern software uses the
stored-program concept, in which stored software programs are accessed and
their instructions are executed (followed) in the computer’s CPU. Once the pro-
gram has finished executing, a new program is loaded into the main memory
and the computer hardware addresses another task.

Computer programs included documentation, which is a written descrip-
tion of the functions of the program. Documentation helps the user operate the
computer system and helps other programmers understand what the program
does and how it accomplishes its purposes. Documentation is vital to the busi-
ness organization. Without it, if a key programmer or user leaves, the knowl-
edge of how to use the program or how it is designed may be lost.

There are two major types of software: application software and systems software.
Application software is a set of computer instructions, written in a pro-

gramming language. The instructions direct computer hardware to perform spe-
cific data or information processing activities that provide functionality to the
user. This functionality may be broad, such as general word processing, or nar-
row, such as an organization’s payroll program. An application program
applies a computer to a need, such as increasing productivity of accountants or
improved decisions regarding an inventory level. Application programming
creates or modifies and improves application software.

Systems software acts primarily as an intermediary between computer hard-
ware and application programs, and knowledgeable users may also directly manip-
ulate it. Systems software provides important self-regulatory functions for computer
systems, such as loading itself when the computer is first turned on, as in Windows
Professional; managing hardware resources such as secondary storage for all appli-
cations; and providing commonly used sets of instructions for all applications to
use. Systems programming either creates or modifies systems software.

Application programs primarily manipulate data or text to produce or provide
information. Systems programs primarily manipulate computer hardware resources.
The systems software available on a computer provides the capabilities and limita-
tions within which the application software can operate. Figure T2.1 shows that
systems software is a necessary intermediary between hardware and application
software; the application software cannot run without the systems software.

Unlike computer hardware, which can be designed and manufactured on
automated assembly lines, most software must be programmed by hand. Com-
puter hardware power grows roughly by a factor of two every 18 months (see
Moore’s law in Chapter 13), but computer software power barely doubles in eight
years. This lag presents a great challenge to software developers and to infor-
mation systems users in general.

T2.1 SOFTWARE FUNDAMENTALS AND TYPES

Software
Fundamentals

Types of Software

t02.qxd 2/16/05 10:39 AM Page T2.2 EQA

T2.2 APPLICATION SOFTWARE T2.3

T2.2 APPLICATION SOFTWARE

Because there are so many different uses for computers, there are a corre-
spondingly large number of different application programs. Application software
includes proprietary application software and off-the-shelf application software.
Tailor-made application software addresses a specific or unique business
need for a company. This type of software may be developed in-house by the
organization’s information systems personnel or it may be commissioned from
a software vendor. Such specific software programs developed for a particular
company by a vendor are called contract software.

Alternatively, off-the-shelf application software can be purchased, leased,
or rented from a vendor that develops programs and sells them to many organ-
izations. Off-the-shelf software may be a standard package or it may be cus-
tomizable. Special purpose programs or “packages” can be tailored for a specific
purpose, such as inventory control or payroll. The word package is a com-
monly used term for a computer program (or group of programs) that has been
developed by a vendor and is available for purchase in a prepackaged form.

If a package is not available for a certain situation, it is necessary to build
the application using programming languages or software development tools.
There are also general-purpose application programs that are not linked to any spe-
cific business task, but instead support general types of information processing.
The most widely used general-purpose application packages are spreadsheet,
data management, word processing, desktop publishing, graphics, multimedia,
and communications.

Some of these general-purpose tools are actually development tools. That is,
you use them to construct applications. For example, you can use Excel to build
decision support applications such as resource allocation, scheduling, or inven-
tory control. You can use these and similar packages for doing statistical analy-
sis, for conducting financial analysis, and for supporting marketing research.

Many decision support and business applications are built with program-
ming languages rather than with general-purpose application programs. This is

Application Software

Systems Software

Hardware

FIGURE T2.1 Systems
software serves as
intermediary between
hardware and functional
applications.

Both application software and systems software are written in coding
schemes called programming languages, which are also presented in this
guide.

t02.qxd 01/25/2005 07:59PM Page T2.3 EQA

T2.4 TECHNOLOGY GUIDE SOFTWARE

especially true for complex, unstructured problems. Information systems appli-
cations can also be built with a mix of general-purpose programs and/or with
a large number of development tools ranging from editors to random number
generators. Of special interest are the software suites, for example, Microsoft
Office. These are integrated sets of tools that can expedite application develop-
ment. Also of special interest are CASE tools and integrated enterprise software,
which are described later in the guide.

SPREADSHEETS. Spreadsheet software transforms a computer screen into a
ledger sheet, or grid, of coded rows and columns (see Figure T2.2). Users can
enter numeric or textual data into each grid location, called a cell. In addition,
a formula or macro can also be entered into a cell to obtain a calculated answer
displayed in that cell’s location. The term macro refers to a single instruction or
formula that combines a number of other simpler instructions. A user-defined
macro can enhance and extend the basic instructions and commands that are
furnished with the spreadsheet. Spreadsheet packages include a large number of
already-programmed statistical, financial, and other business formulas. They are
known as functions.

Computer spreadsheet packages are used primarily for decision support such
as in financial information processing (e.g., such as income statements or cash
flow analysis). However, they also are relevant for many other types of data that
can be organized into rows and columns. Spreadsheets are usually integrated
with other software, such as graphics and data management, to form software
suites. Therefore, they may be called integrated packages.

DATA MANAGEMENT. Data management software supports the storage, retrieval,
and manipulation of data. There are two basic types of data management soft-
ware: simple filing programs patterned after traditional, manual data filing
techniques, and database management systems (DBMSs) that take advan-
tage of a computer’s extremely fast and accurate ability to store and retrieve
data (see Technology Guide 3).

A file is a collection of related records organized alphabetically, chronologically,
hierarchically in levels, or in some other manner. File-based management software
is typically simple to use and often very fast, but it is difficult and time-consuming
to modify because of the structured manner in which the files are created.

Database management software was addresses the problems of file-based
management software. A database is a collection of files serving as the data
resource for computer-based information systems. In a database, all data are
integrated with established relationships. An example of database software is
provided in Figure T2.3.

General-Purpose
Application

Programs

Student Name

Carr, Harold

Ford, Nelson

Lewis, Bruce

Snyder, Charles

Average

73

92

86

63

78.5

95

90

88

71

86.0

90

81

98

76

86.25

258

263

272

210

250.75

B

B

A

C

Exam 1 Exam 2 Exam 3 Total Points Grade

FIGURE T2.2 Sample
calculation of student
grades in a spreadsheet.

t02.qxd 01/25/2005 07:59PM Page T2.4 EQA

T2.2 APPLICATION SOFTWARE T2.5

Microsoft Office includes a database management system for personal use.
An example for corporate use is the new Oracle Database 10g, which is packed
with features designed to make the database administrator’s (DBA)’s job easier,
either by completely automating tasks or by transferring control of important
functions to the server. This allows DBAs to manage large, complex environ-
ments with very little effort.

WORD PROCESSING. Word processing software allows the user to manipu-
late text rather than just numbers. Modern word processors contain many pro-
ductive writing features. A typical word processing software package consists of
an integrated set of programs, including an editor, a formatting program, a print
program, a dictionary, a thesaurus, a grammar checker, a mailing list program,
and integrated graphics, charting, and drawing programs. WYSIWYG (What
You See Is What You Get) word processors have the added advantage of dis-
playing the text material on the screen exactly—or almost exactly—as it will
look on the final printed page (based on the type of printer connected to the
computer).

DESKTOP PUBLISHING. In the past, newsletters, announcements, advertising
copy, and other specialized documents had to be laid out by hand and then
typeset. Desktop publishing software allows microcomputers to perform these
tasks directly. Photographs, diagrams, and other images can be combined with
text, including several different fonts, to produce a finished, camera-ready doc-
ument. When printed on a high-resolution laser printer, the product is difficult
to distinguish from one that was produced by a professional typesetter.

GRAPHICS. Graphics software allows the user to create, store, and display or
print charts, graphs, maps, and drawings. Graphics software enables users to
absorb more information more quickly, to spot relationships and trends in data
more easily, and to make points more emphatically. There are three basic cate-
gories of graphics software packages: presentation graphics, analysis graphics,
and engineering graphics.

FIGURE T2.3 Database
software.

t02.qxd 01/25/2005 07:59PM Page T2.5 EQA

T2.6 TECHNOLOGY GUIDE SOFTWARE

Presentation Graphics. This software allows users to create pseudo-three-
dimensional images, superimpose multiple images, highlight certain aspects of
a drawing, and create freehand drawings. These packages typically contain
drawing tools, presentation templates, various font styles, spell-checking rou-
tines, charting aids, and tools to aid in assembling multiple images into a com-
plete presentation. Many packages have extensive built-in tutorials and libraries
of clip-art—pictures that can be electronically “clipped out” and “pasted” into
the finished image.

Analysis Graphics. These applications additionally provide the ability to
present previously analyzed data—such as statistical data—in graphic formats
like bar charts, line charts, pie charts, and scatter diagrams. The charts may also
include elements of different textures, labels, and headings. Some packages will
prepare three-dimensional displays.

Engineering Graphics. Various engineering software programs are available
to shorten development time of applications and to increase productivity
of draftspersons and engineers. Most notable are computer-aided design and
computer-aided manufacturing (for details see Chapter 6).

MULTIMEDIA. There are two general types of multimedia software: presenta-
tion and interactive. Presentation software presents a sequential procession of
information similar to a movie or television show. The order of events is fixed,
although the presentation can be stopped and started. Speakers and trade show
booths often use multimedia presentation software for marketing purposes.
Interactive software allows a user to alter the sequence or flow of information,
similar to looking at an encyclopedia or a photo album.

Educational, interactive multimedia products are popular at museums or at
information kiosks and show great potential for public and private education
both within and outside the classroom.

COMMUNICATIONS SOFTWARE. Computers are often interconnected in order
to share or relate information. To exchange information, computers utilize comm-
unications software. This software allows computers located close together or far
apart to exchange data over dedicated or public cables, telephone lines, satellite
relay systems, or microwave circuits (see Technology Guide 4).

When communications software exists in both the sending and receiving
computers, they are able to establish and relinquish electronic links, code and
decode data transmissions, verify transmission errors (and correct them auto-
matically), compress data streams for more efficient transmission, and manage
the transmission of documents. Communications software establishes the
switched routings needed to ensure successful “end-to-end” transmissions; it
establishes electronic contact (“handshaking”) between computers, and assures
that data will be sent in the proper format and at the proper speed. It detects
transmission speeds and codes, and routes information to the appropriate hard-
ware. Communications software checks for and handles transmission interrup-
tions or conflicting transmission priorities. Other communications software
includes terminal emulators, remote control software, and fax programs. E-mail
and desktop video conferencing rely on communications software.

Remote control software can let a remote user dial up and operate a com-
puter as if that user is sitting in front of it. Representative software includes
Symantec’s PcAnywhere, Netopia’s Timbuktu Pro, AT&T’s WinVNC, and Microsoft
NetMeeting.

t02.qxd 01/25/2005 07:59PM Page T2.6 EQA

T2.2 APPLICATION SOFTWARE T2.7

SPEECH-RECOGNITION SOFTWARE. Two categories of speech-recognition
software (also known as voice recognition software) are available today: discrete
speech and continuous speech. Discrete speech recognition can interpret only one
word at a time, so users must place distinct pauses between words. This type of
voice recognition can be used to control PC software (by using words such as
“execute” or “print”). But it is inadequate for dictating a memo, because users
find it difficult to speak with measurable pauses between every word and still
maintain trains of thought.

Software for continuous speech recognition can interpret a continuing stream
of words. The software must understand the context of a word to determine its
correct spelling, and be able to overcome accents and interpret words very
quickly. These requirements mean that continuous speech-recognition software
must have a computer with significantly more speed and memory than discrete
speech software.

Many firms and people use speech-recognition software when use of a
mouse and a keyboard is impractical. For example, such software can provide
an excellent alternative for users with disabilities, repetitive strain injuries, or
severe arthritis. Well-known products include IBM’s ViaVoice and Dragon’s Nat-
urally Speech 7.0.

TEXT-TO-SPEECH. Text-to-speech systems convert computer text into voice. A text
file is sent through special software that converts it into spoken words, which
are output through speakers. Blind people use text-to-speech systems to listen
to computer-based documents. People who cannot talk use text-to-speech sys-
tems to choose their words and have their computer speak for them.

Wireless phone companies are using text-to-speech systems to develop voice
portals. Users call a phone number at the voice portal to hear a wide variety of
real-time data, such as local weather, stock quotes, and traffic updates. This
information is retrieved directly from Internet-based information systems and
converted to speech (see tellme.com).

BRAIN WAVE INPUT. A cutting-edge technology is brain wave input, also called
a neural interface. (For more information on neural interfaces, visit www
.sciam.com/1096issue/1096lusted.html.) These systems use electrical signals from the
brain as an input method. By using biofeedback techniques, users can learn how
to control certain types of brain waves. A computer translates the brain wave
activity into some action on the computer. For example, the U.S. Air Force has
tried out this technology in flight simulations. It trained pilots to control cer-
tain brain waves that would make a plane turn right or left. In experiments,
some pilots were able to control the plane, turning right or left at will; others
could produce only one turn, running in circles.

SOFTWARE SUITES. Software suites are collections of application software
packages in a bundle. Software suites can include word processors, spreadsheets,
database management systems, graphics programs, communications tools, and
others. Microsoft Office, Novell Perfect Office, and Lotus SmartSuite are widely
used software suites for personal computers. Each of these suites includes a
spreadsheet program, word processor, database program, and graphics package
with the ability to move documents, data, and diagrams among them. In addi-
tion to end-user-type suites, such as described above, there are software kits for
system developers, such as CASE tools, which are described later.

t02.qxd 01/25/2005 07:59PM Page T2.7 EQA

T2.8 TECHNOLOGY GUIDE SOFTWARE

WORKGROUP SOFTWARE. Workgroup software, or groupware, helps groups
and teams work together by sharing information and by controlling workflow
within the group. The use of this type of software has grown because of a need
for groups to work together more effectively, coupled with technological
progress in networking and group-support products.

Many groupware products are designed to support specific group-related
tasks such as project management, scheduling (called calendaring), workflow,
and retrieving data from shared databases. For example, Lotus Notes is designed
as a system for sharing text and images, and contains a data structure that
is a combination of a table-oriented database and an outline. Using Lotus Notes,
groups of users working together on projects are able to see each other’s screens,
share data, and exchange ideas and notes in an interactive mode. Such capabilities
increase the productivity of work groups. A well-known workgroup product in
academia is GroupSystems. It is suitable for groups working together in one
room, to support brainstorming, categorization, voting, etc.

Other groupware products focus primarily on the flow of work in office
settings. These products provide tools for structuring the process by which infor-
mation for a particular task is managed, transferred, and routed. Other groupware
systems are basically e-mail systems extended by classifying messages and using
those classifications to control the way messages are handled. Of special interest
are group decision support systems (GDSSs), which are presented in Chapter 11.

OTHER APPLICATION SOFTWARE. There exist hundreds of other application
software products. Of special interest to business managers are:

MIDDLEWARE. Internet applications designed to let one company interact with
other companies are complex because of the variety of hardware and software
with which they must be able to work. This complexity will increase as mobile
wireless devices begin to access company sites via the Internet. Middleware is
software designed to link application modules developed in different computer
languages and running on heterogeneous platforms, whether on a single
machine or over a network. Middleware keeps track of the locations of the soft-
ware modules that need to link to each other across a distributed system and
manages the actual exchange of information.

ORGANIZATION-WIDE APPLICATIONS. Enterprise software consists of programs
that manage the vital operations of an organization (enterprise), such as supply-
chain management (movement of raw materials from suppliers through
shipment of finished goods to customers), inventory replenishment, ordering,
logistics coordination, human resources management, manufacturing, opera-
tions, accounting, and financial management. Some common modules of enter-
prise applications software are payroll, sales order processing, accounts payable/
receivable, and tax accounting.

Enterprise software vendors are producing software that is less expensive,
based on industry standards, compatible with other vendors’ products, and easier
to configure and install. The largest vendors—Systeme Anwendung Produkte
(SAP) AG, Oracle Corporation, PeopleSoft Inc., and Computer Associates—are devel-
oping software programs that make the jobs of business users and IT personnel
easier. Because of the cost, complexity, and time needed to implement enter-
prisewide corporate applications, many companies are purchasing only the specific

t02.qxd 01/25/2005 07:59PM Page T2.8 EQA

T2.3 APPLICATION SOFTWARE T2.9

application (or module) required, such as manufacturing, financial, or sales force
automation.

There are two major approaches to enterprise architecture (EA): a top-down
approach and a bottom-up approach. A top-down approach assumes a compre-
hensive scope and strictly follows a structured process. If organizations need to
address significant inefficiencies and redundancies in their business process or
application portfolios and can wait at least a year for measurable benefits, they
should start with the top-down approach. Alternatively, organizations that need
results to affect the bottom line quickly or those where rampant technology
diversity has degraded service-delivery quality should start with the bottom-up
approach. The best approach may be a hybrid, but the most important point is
that the approach must fit the culture of the organization.

PRESENCE SOFTWARE. Presence technology can detect when you’re online
and what kind of device you’re using. It has its roots in instant messaging (IM).
When you log on to an IM service, your arrival is immediately announced to
a list of other users you’ve selected to be alerted to your online presence.
Microsoft’s HailStorm services platform depends on this technology: When
someone tries to get in touch with you, the system will detect your network
location and level of accessibility and may even e-mail, page, or call you.

SCHEMATICS SOFTWARE. Microsoft Visio-2000 can create crystal-clear net-
work and telecommunications schematics, space plans, and even detailed HVAC
layouts, to quickly communicate just what goes where, when, and how. Besides
this, it can help you draw many diagrams about systems analysis and design
including DFD, ERD, UML and also help you complete forward-engineering as
well as backward-engineering tasks.

EXAMPLES OF NEW APPLICATION SOFTWARE. New application software is
being developed and marketed each year. Examples of such software products
are the following.

● United Internet Technologies (UIT) has developed a solution that allows you to
maximize the advantages of both CD-ROMs and the Internet in direct market-
ing. This solution is called digitally integrated video overlay (Divo) software
which blends video from a CD-ROM into a Web site, providing fully integrated,
full-screen, real-time video on the Internet without a high-speed connection.
The Divo CD-ROM installs proprietary software onto the user’s computer drive
that allows Divo to take its cues from the Web site, enabling you to control the
content a viewer sees according to the day of the week or time of day or even
the month. The information on the CD is not updated from the Web site; every-
thing is there on the CD when it is delivered into the user’s hands. The coding
from the Web site simply instructs the CD what to play and when.

● Microsoft’s new software architecture, called the Dynamic Systems Initiative,
supports the concept of autonomic computing. It attempts to provide a soft-
ware environment for more automated and efficient and less complex data
centers. Initially, they will have new tools in Windows Server 2003, which
gives more control over CPU and memory utilization, for managing storage
area networks. Next will be technology called Automated Deployment Service
(ADS) that will support the intelligent provisioning of Windows and related
software for faster setup on servers.

t02.qxd 2/16/05 10:39 AM Page T2.9 EQA

T2.10 TECHNOLOGY GUIDE SOFTWARE

● A Swedish company, Cycore, has provided HMV.com interactive three-
dimensional software called Cult3D. With it, shoppers can now electronically
flip open the CD cover and zoom in to read the lyrics and liner notes. Cult3D
is a multi-platform 3-D rendering engine that allows companies to easily build
and display high-quality interactive 3-D animations of products on their Web
sites. Users can spin items around, and zoom in on product details, viewing
objects from any perspective with the click of a mouse. Additional examples
of software applications are provided throughout the book.

● In the past, all automotive electronic systems platforms were missing the im-
portant elements of robustness and flexible software architecture. These
characteristics would have enabled large automobile manufacturers to easily
tailor their systems for each brand or vehicle program and offer their cus-
tomers a high degree of personalization. Today, some solutions are available.
For example, Ford’s Vehicle Consumer Services Interface (VCSI) is an in-
vehicle computing platform. It is based on Java and designed to manage
effectively traditional vehicle systems and functions.

● The National Science Foundation’s TeraGrid www.teragrid.org has a massive
research computing infrastructure that combines five large computing and
data management facilities and supports many academic institutions and re-
search laboratories in their endeavors. The TeraGrid is one of the largest grid-
based, high-performance computing (HPC) infrastructures ever created.

TABLE T2.1 Common Operating Systems Tasks

● Monitoring performance ● Formatting diskettes
● Correcting errors ● Controlling the computer monitor
● Providing and maintaining the user interface ● Sending jobs to the printer
● Starting (“booting”) the computer ● Maintaining security and limiting access
● Reading programs into memory ● Locating files
● Managing memory allocation to those programs ● Detecting viruses
● Placing files and programs in secondary storage ● Compressing data
● Creating and maintaining directories

T2.3 SYSTEMS SOFTWARE

Systems software is the class of programs that controls and supports the com-
puter hardware and its information processing activities. Systems software also
facilitates the programming, testing, and debugging of computer programs. It is
more general than applications software and is usually independent of any spe-
cific type of application. Systems software programs support application software
by directing the basic functions of the computer. For example, when the com-
puter is turned on, the initialization program (a systems program) prepares and
readies all devices for processing. Other common operating systems tasks are
shown in Table T2.1.

Systems software can be grouped into three major functional categories:

● System control programs are programs that control the use of hardware, soft-
ware, and data resources of a computer system during its execution of a
user’s information processing job. An operating system is the prime ex-
ample of a system control program.

t02.qxd 01/25/2005 07:59PM Page T2.10 EQA

T2.3 SYSTEMS SOFTWARE T2.11

● System support programs support the operations, management, and users of
a computer system by providing a variety of services. System utility pro-
grams, performance monitors, and security monitors are examples of system
support programs.

● System development programs help users develop information processing
programs and procedures and prepare user applications. Major development
programs are language compilers, interpreters, and translators.

The most important system control programs are described below.

OPERATING SYSTEMS. The main component of systems software is a set of pro-
grams collectively known as the operating system. The operating system, such
as Windows XP, supervises the overall operation of the computer, including
monitoring the computer’s status, handling executable program interrup-
tions, and scheduling operations, which include controlling input and output
processes.

Mainframes and minicomputers contain only one CPU, but they perform
several tasks simultaneously (such as preparation and transfer of results). In
such cases, the operating system controls which particular tasks have access to
the various resources of the computer. At the same time, the operating system
controls the overall flow of information within the computer.

On a microcomputer, the operating system controls the computer’s com-
munication with its display, printer, and storage devices. It also receives and
directs inputs from the keyboard and other data input sources. The operating
system is designed to maximize the amount of useful work the hardware of the
computer system accomplishes.

Programs running on the computer use various resources controlled by the
operating system. These resources include CPU time, primary storage or mem-
ory, and input/output devices. The operating system attempts to allocate the use
of these resources in the most efficient manner possible.

The operating system also provides an interface between the user and the
hardware. By masking many of the hardware features, both the professional
and end-user programmers are presented with a system that is easier to use.

Portability, a desirable characteristic of operating systems, means that the
same operating system software can be run on different computers. An exam-
ple of a portable operating system is Unix. Versions of Unix can run on hard-
ware produced by a number of different vendors. Examples include Linux,
Xenix, and Sun’s Solaris. However, there is no one standard version of Unix
that will run on all machines.

Operating System Functions. The operating system performs three major
functions in the operation of a computer system: job management, resource
management, and data management.

● Job management is the preparing, scheduling, and monitoring of jobs for
continuous processing by the computer system. A job control language (JCL)
is a special computer language found in the mainframe-computing en-
vironment that allows a programmer to communicate with the operating
system.

● Resource management is controlling the use of computer system resources
employed by the other systems software and application software programs

System Control
Programs

t02.qxd 2/16/05 10:39 AM Page T2.11 EQA

T2.12 TECHNOLOGY GUIDE SOFTWARE

being executed on the computer. These resources include primary storage,
secondary storage, CPU processing time, and input/output devices.

● Data management is the controlling of the input and output of data as well
as their location, storage, and retrieval. Data management programs control
the allocation of secondary storage devices, the physical format and cata-
loging of data storage, and the movement of data between primary storage
and secondary storage devices.

A variety of operating systems are in use today. The operating system used
on most personal computers is some version of Microsoft’s Windows and NT.
Many minicomputers use a version of the Unix operating system. Mainframes
primarily use the operating systems called virtual memory system (VMS) or multiple
virtual system (MVS).

Desktop and Notebook Computer Operating Systems. The Windows family is
the leading series of desktop operating systems. The MS-DOS (Microsoft Disk
Operating System) was one of the original operating systems for the IBM PC
and its clones. This 16-bit operating system, with its text-based interface, has
now been almost totally replaced by GUI operating systems such as Windows
2000 and Windows XP. Windows 1.0 through Windows 3.1 (successive ver-
sions) were not operating systems, but were operating environments that pro-
vided the GUI that operated with, and extended the capabilities of, MS-DOS.

Windows 95, released in 1995, was the first of a series of products in the
Windows operating system that provided a streamlined GUI by using icons
to provide instant access to common tasks. Windows 95 is a 32-bit operating
system that features multitasking, multithreading, networking, and Internet
integration capabilities, including the ability to integrate fax, e-mail, and sched-
uling programs. Windows 95 also offers plug-and-play capabilities. Plug-and-
play is a feature that can automate the installation of new hardware by enabling
the operating system to recognize new hardware and install the necessary
software (called device drivers) automatically.

Subsequent products in the Microsoft Windows operating system are:

● Windows 98 was not a major upgrade to Windows 95, but did offer minor
refinements, bug fixes, and enhancements to Windows 95.

● Windows Millennium Edition (Windows ME) is a major update to
Windows 95, offering improvements for home computing in the areas of PC
reliability, digital media, home networking, and the online experience.
(However, it has received many negative comments about its memory man-
agement.)

● Windows NT is an operating system for high-end desktops, workstations,
and servers. It provides the same GUI as Windows 95 and 98, and has more
powerful multitasking, multiprocessing, and memory-management capabili-
ties. Windows NT supports software written for DOS and Windows, and it
provides extensive computing power for new applications with large mem-
ory and file requirements. It is also designed for easy and reliable connec-
tion with networks and other computing machinery, and is proving popular
in networked systems in business organizations.

● Windows 2000 is a renamed version of Windows NT 5.0. This operating sys-
tem has added security features, will run on multiple-processor computers,
and offers added Internet and intranet functionality.

t02.qxd 01/25/2005 07:59PM Page T2.12 EQA

T2.3 SYSTEMS SOFTWARE T2.13

● Windows XP is the first upgrade to Windows 2000 and has three versions:
a 32-bit consumer version, a 32-bit business version, and a 64-bit business
version. Windows XP is the first version of Windows to support Microsoft’s
.NET platform (discussed later in the chapter).

● Following Windows XP, Microsoft will release its first fully .NET-enabled
Windows operating system, code-named Blackcomb. Blackcomb will feature
natural interfaces, including speech recognition and handwriting support.
Windows 2003 is the first version of this improved operating system.

UNIX is another operating system that provides many sophisticated desktop
features, including multiprocessing and multitasking. UNIX is valuable to business
organizations because it can be used on many different sizes of computers (or dif-
ferent platforms), can support many different hardware devices (e.g., printers, plot-
ters, etc.), and has numerous applications written to run on it. UNIX has many
different versions. Most UNIX vendors are focusing their development efforts on
servers rather than on desktops, and are promoting Linux for use on the desktop.

Linux is a powerful version of the UNIX operating system that is available
to users completely free of charge. It offers multitasking, virtual memory
management, and TCP/IP networking. Linux was originally written by Linus
Torvalds at the University of Helsinki in Finland in 1991. He then released the
source code to the world (called open source software). Since that time, many pro-
grammers around the world have worked on Linux and written software for it.
The result is that, like UNIX, Linux now runs on multiple hardware platforms,
can support many different hardware devices, and has numerous applications
written to run on it. Linux is becoming widely used by Internet service providers
(ISPs), the companies that provide Internet connections. The clearinghouse for
Linux information on the Internet may be found at linuxhq.com.

The Macintosh operating system (Mac OS X Panther), for Apple Mac-
intosh microcomputers, is a 32-bit operating system that supports Internet inte-
gration, virtual memory management, and AppleTalk networking. Mac OS X
features a new user interface (named Aqua), advanced graphics, virtual mem-
ory management, and multitasking.

IBM’s OS/2 Warp is a 32-bit operating system that supports development of
e-business applications, accommodates larger applications, allows applications to
be run simultaneously, and supports networked multimedia and pen-computing
applications.

Mobile Device Operating Systems. Operating systems for mobile devices are
designed for a variety of devices, including handheld computers, set-top boxes,
subnotebook PCs, mobile telephones, and factory-floor equipment. The mobile
device operating system market includes embedded Linux, Microsoft’s Windows
CE and Pocket PC, Windows Embedded NT 4.0, and Palm OS from Palm. Some
mobile device operating systems are described below:

● Embedded Linux is a compact form of Linux used in mobile devices. Both
IBM and Motorola are developing embedded Linux for mobile devices.

● Windows CE, a 32-bit operating system, is Microsoft’s information appli-
ance operating system. Windows CE includes scaled-down versions (known
as pocket versions) of Microsoft Word, Excel, PowerPoint, and Internet Explorer.

● Pocket PC is a version of Windows CE 3.0 specifically designed for personal
digital assistants and handheld computers.

t02.qxd 01/25/2005 07:59PM Page T2.13 EQA

T2.14 TECHNOLOGY GUIDE SOFTWARE

● Windows Embedded NT 4.0, a 32-bit operating system, is aimed at em-
bedded devices that require more operating system capabilities and flexibil-
ity than Windows CE can offer.

● The Palm operating system was developed by Palm for its PalmPilot hand-
held PDAs. Palm OS includes a graphical user interface, and users must learn
a stylized alphabet, called Graffiti, to make the device receive handwritten
input.

Mainframe Operating Systems. Mainframe computers usually require spe-
cialized OSs that can handle a large load and that have advanced security fea-
tures. They are used in entire organizations or large departments, and they are
server-based. The major server operating systems include UNIX, Linux, Win-
dows 2000 Server, Windows XP Server, Windows 2003 Server, and Novell Net-
Ware. Although some of these are also desktop operating systems, all can serve
as departmental server operating systems because of their strong scalability, reli-
ability, backup, security, fault tolerance, multitasking, multiprocessing, TCP/IP
networking (Internet integration), network management, and directory services.

Enterprise Server Operating Systems. Enterprise server operating systems
(e.g., IBM’s OS/390, VM, VSE, and OS/400) generally run on mainframes and
midrange systems. Enterprise operating systems offer superior manageability,
security, stability, and support for online applications, secure electronic commerce,
multiple concurrent users, large (terabyte) databases, and millions of transactions
per day. Enterprise server operating systems also offer partitioning, a method of
segmenting a server’s resources to allow the processing of multiple applications
on a single system.

OS�400 is IBM’s operating system for the AS/400 server line, which was
renamed eServer iSeries 400. IBM’s z/Architecture (z/OS), a new 64-bit mainframe
operating system, replaces all previous mainframe operating systems. The first
system implementing the new architecture is the eServer zSeries 900.

Supercomputer Operating Systems. Supercomputer operating systems tar-
get the supercomputer hardware market. Examples of these systems include the
Cray X1’s Unicos, HP-UX and HP’s 2000 K/S/X, and IBM’s AIX (both types of
UNIX). Other manufacturers are Sun, NEC, Silicon Graphics, and Fujitsu. These
operating systems manage highly parallel multiprocessor and multiuser envi-
ronments.

Although operating systems are designed to help the user in utilizing the
resources of the computer, instructions or commands necessary to accomplish
this process are often user-unfriendly. These commands are not intuitive, and a
large amount of time must be spent to master them. Intelligent agents (Chapters 4
and 11) provide some help in this area.

GRAPHICAL USER INTERFACE OPERATING SYSTEMS. The graphical user
interface (GUI) is a system in which users have direct control of visible objects
(such as icons and pointers) and actions that replace complex command syn-
tax. The next generation of GUI technology will incorporate features such as
virtual reality, sound and speech, pen and gesture recognition, animation, multi-
media, artificial intelligence, and highly portable computers with cellular/
wireless communication capabilities. The most well-known GUIs are Microsoft
Windows, as described in the previous material.

t02.qxd 01/27/2005 03:05PM Page T2.14 EQA

T2.4 SYSTEMS SOFTWARE T2.15

The next step in the evolution of GUIs is social interfaces. A social inter-
face is a user interface that guides the user through computer applications by
using cartoonlike characters, graphics, animation, and voice commands. The car-
toonlike characters can be cast as puppets, narrators, guides, inhabitants, avatars
(computer-generated humanlike figures), or hosts.

PROCESSING TASKS. Operating systems manage processing activities with
some task management features that allocate computer resources to optimize
each system’s assets. The most notable features are described below.

Multiprogramming and Multiprocessing. Multiprogramming involves two
or more application modules or programs placed into main memory at the same
time. The first module runs on the CPU until an interrupt occurs, such as a
request for input. The input request is initiated and handled while the execu-
tion of a second application module is started. The execution of the second
module continues until another interruption occurs, when execution of a third
module begins. When the processing of the interrupt has been completed, con-
trol is returned to the program that was interrupted, and the cycle repeats.
Because switching among programs occurs very rapidly, all programs appear to
be executing at the same time.

In a multiprocessing system, more than one processor is involved. The
processors may share input/output devices, although each processor may also
control some devices exclusively. In some cases, all processors may share pri-
mary memory. As a result, more than one CPU operation can be carried on at
exactly the same time; that is, each processor may execute an application mod-
ule or portion of an application module simultaneously. Multiprogramming
is implemented entirely by software, whereas multiprocessing is primarily a
hardware implementation, aided by sophisticated software.

Time-Sharing. Time-sharing is an extension of multiprogramming. In this
mode, a number of users operate online with the same CPU, but each uses a
different input/output terminal. An application module of one user is placed
into a partition (a reserved section of primary storage). Execution is carried on
for a given period of time, a time slice, or until an input/output request (an
interrupt) is made. As in multiprogramming, modules of other users have also
been placed into primary storage in other partitions. Execution passes on to
another application module at the end of a time slice and rotates among all
users.

VIRTUAL MEMORY. Virtual memory allows the user to write a program as if pri-
mary memory were larger than it actually is. Users are provided with “virtually”
all the primary storage they need. With virtual memory, all the pages of an
application module need not be loaded into primary memory at the same
time. As the program executes, control passes from one page to another. If the
succeeding page is already in primary memory, execution continues. If the suc-
ceeding page is not in primary memory, a delay occurs until that page is loaded.
In effect, primary memory is extended into a secondary storage device.

Virtual Machine Operating System. A virtual machine is a computer system
that appears to the user as a real computer but, in fact, has been created by the
operating system. A virtual machine operating system makes a single real machine
appear as multiple machines to its users, each with its own unique operating
system. Each user may choose a different operating system for his or her virtual

t02.qxd 01/25/2005 07:59PM Page T2.15 EQA

T2.16 TECHNOLOGY GUIDE SOFTWARE

machine. As a result, multiple operating systems may exist in the real machine
at the same time.

A popular virtual machine operating system is IBM’s VM/ESA. A control
program supervises the real machine and keeps track of each virtual machine’s
operation. The conversational monitoring system (CMS) provides the user with
a highly interactive environment coupled with easier access to translators,
editors, and debugging tools. Of the newest tools, Java’s Virtual Machine is of
special interest.

SYSTEM SUPPORTS PROGRAMS. System utilities are programs that have been
written to accomplish common tasks such as sorting records, merging sets of
data, checking the integrity of magnetic disks, creating directories and subdi-
rectories, restoring accidentally erased files, locating files within the directory
structure, managing memory usage, and redirecting output. These are basic tasks
to most OSs and application programs. TestDrive, for example, allows you to
download software; you try it, and TestDrive helps you either with a payment
or with removal of the software. Some hard-disk clean-up software, like
Microsoft’s Disk Defragmenter, also called defraggers or diagnostic and Repair
tools, can help tidy up the hard disk by packing the files together to make more
continuous room for new files, locating seldom-used files, leftover temporary
files and other space wasters. Norton’s Utilities performs routine housekeeping
tasks on hard drives and on secondary storage devices.

SYSTEM PERFORMANCE MONITORS. System performance monitors monitor com-
puter system performance and produce reports containing detailed statistics con-
cerning the use of system resources, such as processor time, memory space,
input/output devices, and system and application programs.

SYSTEM SECURITY MONITORS. System security monitors are programs that
monitor the use of a computer system to protect it and its resources from
unauthorized use, fraud, or destruction. Such programs provide the computer
security needed to allow only authorized users access to the system. Security
monitors also control use of the hardware, software, and data resources of a
computer system. Finally, these programs monitor use of the computer and col-
lect statistics on attempts at improper use.

SYSTEM DEVELOPMENT PROGRAMS. Translating user computer programs
written in source code into object or machine code requires the use of compil-
ers or interpreters, which are examples of system development programs. Another
example is computer-aided software engineering (CASE) programs.

T2.4 PROGRAMMING LANGUAGES

Programming languages provide the basic building blocks for all systems and
application software. Programming languages allow people to tell computers
what to do and are the means by which systems are developed. Programming
languages are basically a set of symbols and rules used to write program code.
Each language uses a different set of rules and the syntax that dictates how the
symbols are arranged so they have meaning.

t02.qxd 01/25/2005 07:59PM Page T2.16 EQA

T2.4 PROGRAMMING LANGUAGES T2.17

The characteristics of the languages depend on their purpose. For example,
if the programs are intended to run batch processing, they will differ from those
intended to run real-time processing. Languages for Internet programs differ
from those intended to run mainframe applications. Languages also differ
according to when they were developed; today’s languages are more sophisti-
cated than those written in the 1950s and the 1960s.

The different stages of programming languages over time are called “generations.”
The term generation may be misleading. In hardware generation, older generations
are becoming obsolete and are not used. All software generations are still in use.
They are shown in Figure T2.4 and are discussed next.

MACHINE LANGUAGE: FIRST GENERATION. Machine language is the lowest-
level computer language, consisting of the internal representation of instructions
and data. This machine code—the actual instructions understood and directly
executable by the CPU—is composed of binary digits. A program using this
lowest level of coding is called a machine language program and represents the
first generation of programming languages. A computer’s CPU is capable of
executing only machine language programs, which are machine dependent.
That is, the machine language for one type of central processor may not run
on other types.

Machine language is extremely difficult to understand and use by pro-
grammers. As a result, increasingly more user-oriented languages have been
developed. These languages make it much easier for people to program, but they
are impossible for the computer to execute without first translating the program
into machine language. The set of instructions written in a user-oriented lan-
guage is called a source program. The set of instructions produced after trans-
lation into machine language is called the object program.

ASSEMBLY LANGUAGE: SECOND GENERATION. An assembly language is a
more user-oriented language that represents instructions and data locations by
using mnemonics, or memory aids, which people can more easily use. Assembly
languages are considered the second generation of computer languages.
Compared to machine language, assembly language eases the job of the pro-
grammer considerably. However, one statement in an assembly language is still
translated into one statement in machine language. Because machine language is
hardware dependent and assembly language programs are translated mostly on
a one-to-one statement basis, assembly languages are also hardware dependent.

The Evolution of
Programming

Languages

FIGURE T2.4 The evolu-
tion of programming
languages. With each
generation progress is
made toward human-like
natural language.

Machine
Language

O–1
Long,
difficult
programming

Assembly
Language

Assemble
repetitive
instructions,
shorter
code

Progress

Generations

Machine
Human

Natural
Language

Include
commands,
shorter
code

Procedural
Languages

Nonprocedural
Languages

Application
generators,
commands
specify
results

Intelligent
Languages

Natural
language
processing

1st 2nd 3rd 4th 5th

t02.qxd 2/16/05 10:39 AM Page T2.17 EQA

T2.18 TECHNOLOGY GUIDE SOFTWARE

A systems software program called an assembler accomplishes the transla-
tion of an assembly language program into machine language. An assembler
accepts a source program as input and produces an object program as output.
The object program is then processed into data (see Figure T2.5).

High-level languages are the next step in the evolution of user-oriented pro-
gramming languages. High-level languages are much closer to natural language
and therefore easier to write, read, and alter. Moreover, one statement in a high-
level language is translated into a number of machine language instructions,
thereby making programming more productive.

PROCEDURAL LANGUAGES: THIRD GENERATION. Procedural languages are the
next step in the evolution of user-oriented programming languages. They are
also called third-generation languages, or 3GLs. Procedural languages are much
closer to so-called natural language (the way we talk) and therefore are easier
to write, read, and alter. Moreover, one statement in a procedural language is
translated into a number of machine language instructions, thereby making
programming more productive. In general, procedural languages are more like
natural language than assembly languages are, and they use common words
rather than abbreviated mnemonics. Because of this, procedural languages are
considered the first level of higher-level languages.

Procedural languages require the programmer to specify—step by step—
exactly how the computer will accomplish a task. A procedural language is ori-
ented toward how a result is to be produced. Because computers understand
only machine language (i.e., 0’s and 1’s), higher-level languages must be translated
into machine language prior to execution. This translation is accomplished by sys-
tems software called language translators. A language translator converts the high-
level program, called source code, into machine language code, called object code.
There are two types of language translators—compilers and interpreters.

Compilers. The translation of a high-level language program to object code
is accomplished by a software program called a compiler. The translation
process is called compilation.

FIGURE T2.5 The lan-
guage translation process.

Source
Program

CPU

Written by
a programmer

(a)

Converted by
a translator

Ready to run
as machine code

Data CPU

Data are
entered

(b)

Program is
executed

Results are
produced

Object
program

Output

Object
program

Translator

High-Level
Languages

t02.qxd 01/25/2005 07:59PM Page T2.18 EQA

T2.4 PROGRAMMING LANGUAGES T2.19

Interpreters. An interpreter is a compiler that translates and executes one
source program statement at a time. Therefore, interpreters tend to be simpler
than compilers. This simplicity allows for more extensive debugging and diag-
nostic aids to be available on interpreters.

Examples of Procedural Languages. FORTRAN (Formula Translator) is an
algebraic, formula-type procedural language. FORTRAN was developed to meet
scientific processing requirements.

COBOL (Common Business-Oriented Language) was developed as a pro-
gramming language for the business community. The original intent was to
make COBOL instructions approximate the way they would be expressed in
English. As a result, the programs would be “self-documenting.” There are more
COBOL programs currently in use than any other computer language.

Microsoft Visual BASIC is the extension of BASIC programming language.
This language is famous for its graphical user interface and is ideal for creating
prototypes. In 2002, Microsoft launched its .NET platform, so that all of its lan-
guages, including Visual BASIC, support this powerful platform.

The C programming language experienced the greatest growth of any lan-
guage in the 1990s. C is considered more transportable than other languages,
meaning that a C program written for one type of computer can generally be
run on another type of computer with little or no modification. Also, the C lan-
guage is easily modified. Other procedural languages are Pascal, BASIC, APL,
RPG, PL/1, Ada, LISP, PROLOG, C#, C��, and Delphi. Some of these are used
in object-oriented programming (to be described later).

Interpreted Languages. Java, designed by Sun, is now the most popular
language for Web programming. It also uses an interpreter that translates into
a machine language, called Bytecode. It is very similar to C, but it does not have
the error-prone paint feature.

NONPROCEDURAL LANGUAGES: FOURTH GENERATION. Another type of high-
level language, called nonprocedural or fourth-generation language (4GL), allows
the user to specify the desired results without having to specify the detailed
procedures needed to achieve the results. A nonprocedural language is oriented
toward what is required. An advantage of nonprocedural languages is that they
may be manipulated by nontechnical users to carry out specific functional tasks.
4GLs, also referred to as command languages, greatly simplify and accelerate the
programming process as well as reduce the number of coding errors.

The term fourth-generation language is used to differentiate these languages
from machine languages (first generation), assembly languages (second gener-
ation), and procedural languages (third generation). For example, application (or
program) generators are considered to be 4GLs, as are query (e.g., MPG’s RAMIS),
report generator (e.g., IBM’s RPG), and data manipulation languages (e.g.,
ADABASE’s Natural) provided by most database management systems (DBMSs).
DBMSs allow users and programmers to interrogate and access computer data-
bases using statements that resemble natural language. Many graphics languages
(Powerpoint, Corel Draw, Photoshop, and Flash) are considered 4GLs. Other
4GLs are FOCUS, PowerHouse, Developer/2000, and Visual FoxPro.

NATURAL PROGRAMMING LANGUAGES: FIFTH-GENERATION LANGUAGES. Nat-
ural language programming languages (NLPs) are the next evolutionary step and
are sometimes known as fifth-generation languages or intelligent languages.

t02.qxd 01/25/2005 07:59PM Page T2.19 EQA

T2.20 TECHNOLOGY GUIDE SOFTWARE

Translation programs to translate natural languages into a structured, machine-
readable form are extremely complex and require a large amount of computer
resources. Examples are INTELLECT and ELF. These are usually front-ends to
4GLs (such as FOCUS) that improve the user interface with the 4GLs. Several
procedural artificial intelligence languages (such as LISP) are labeled by some as
5GLs. Initial efforts in artificial intelligence in Japan were called the Fifth Gen-
eration Project. A comparison of the five generations is shown in Table T2.2.

SIXTH-GENERATION LANGUAGES. Although some people call advanced machine
learning languages (see neural computing in Chapter 11) sixth-generation languages,
there are no current commercial languages that are closer to human or natural
languages than NLPs. Some research institutions are working on the concept of
such languages, which could be commercialized in the future.

Several new languages have been developed in the last 10 to 15 years. These
languages were designed to fit new technologies such as multimedia, hyperme-
dia, document management, and the Internet. The major new languages are
described next.

OBJECT-ORIENTED PROGRAMMING LANGUAGES. Object-oriented program-
ming (OOP) models a system as a set of cooperating objects. Like structured
programming, object-oriented programming tries to manage the behavioral
complexity of a system, but it goes beyond structured programming, also trying
to manage the information complexity of a system. The object-oriented approach
involves programming, operating systems environment, object-oriented databases,
and a new way of approaching business applications.

The object-oriented (OO) approach views a computer system as a collection
of interacting objects. These objects have certain features, or attributes, and they
can exhibit certain behaviors. Further, similar objects in a computer system can
be grouped and classified as a specific class of things. The objects in a computer
system can interact with each other, and people and objects can interact as well.
People interact with objects by sending them messages telling them what to do.
Objects also interact by sending each other messages.

Concepts of the Object-Oriented Approach. The basic concepts of OO are
objects, classes, message passing, encapsulation, inheritance, and polymorphism.
Since these concepts sound very complex and technical at first, it may be help-
ful to relate them to aspects of graphical user interfaces in popular operating

TABLE T2.2 Language Generation Table

Features

Portable Use of
Language (Machine Concise Mnemonics
Generation Independent) (One-to-Many) & Labels Procedural Structured

1st—Machine no no no yes yes
2nd—Assembler no no yes yes yes
3rd—Procedural yes yes yes yes yes
4th—Nonprocedural yes yes yes no yes
5th—Natural language yes yes yes no no

New Programming
Languages

t02.qxd 01/25/2005 07:59PM Page T2.20 EQA

T2.4 PROGRAMMING LANGUAGES T2.21

systems, such as Windows and Mac OS 9 for Apple’s computers. These interfaces
were developed through object-oriented programming, and they incorporate
object-oriented features.

Object-oriented systems view software as a collection of interacting objects.
An object models things in the real world. These things may be physical enti-
ties such as cars, students, or events. Or, they may be abstractions such as bank
accounts, or aspects of an interface such as a button or a box to enter text.

When we refer to an object, we can have two possible meanings: a class or
an instance. A class is a template or general framework that defines the meth-
ods and attributes to be included in a particular type of object. An object is a
specific instance of a class, able to perform services and hold data. For exam-
ple, “student” may be a class in a student registration system. A particular
student, John Kim, can be an instance of that class, and thus an object.

Objects have data associated with them. The data elements are referred to
as attributes, or as variables because their values can change. For example, the
John Kim object could hold the data that he is a senior, majoring in manage-
ment information systems, and registering for the fall quarter.

Objects exhibit behaviors, which are things that they do. The programmer
implements these behaviors by writing sections of code that perform the
methods of each object. Methods are the procedures or behaviors performed
by an object that will change the attribute values of that object. Methods are
sometimes referred to as the operations that manipulate the object. Common
behaviors include changing the data in an object and communicating informa-
tion on data values. By clicking on a “check box” in a Windows system, a user
initiates the behavior that changes the attribute to “checked” and shows an X
or check mark in the box.

Objects interact with each other using messages. These messages represent
requests to exhibit the desired behaviors. The object that initiates a message is the
sender, and the object that receives a message is the receiver. When we interact
with objects, we send messages to them and they may also send messages to us.
Clicking on a button, selecting an item from a menu, and dragging and dropping
an icon are ways of sending messages to objects. These messages may activate
methods in the recipient objects, and in turn new messages may be generated.

Message passing is the only means to get information from an object,
because an object’s attributes are not directly accessible. The inaccessibility of
data in an object is called encapsulation or information hiding. By hiding its
variables, an object protects other objects from the complications of depending
on its internal structure. The other objects do not have to know each variable’s
name, the type of information it contains, or the physical storage format of the
information. They only need to know how to ask the object for information.

With inheritance, a class of objects can be defined as a special case of a
more general class, automatically including the method and variable definitions
of the general class. Special classes of a class are subclasses, and the more gen-
eral class is a superclass. For example, the student class is a subclass of human
being, which is the superclass. The student class may be further divided into in-
state students, out-of-state students, or scholarship students, which would be
subclasses of the student class. This type of organization results in class hierar-
chies. The subclass can override or add to the definitions of the superclass attrib-
utes and methods. In other words, subclasses inherit all the characteristics of
higher-level classes.

t02.qxd 01/25/2005 07:59PM Page T2.21 EQA

T2.22 TECHNOLOGY GUIDE SOFTWARE

Inheritance is particularly valuable because analysts can search through pre-
defined class hierarchies, called class libraries, to find classes that are similar to
the classes they need in a new system. This process saves large amounts of time.
For example, if the end user needs to deal with students as a class of objects,
the analyst may be able to find a general class that is similar to the student class
as viewed by the end user. Therefore, the analyst can reuse information from
an existing class instead of starting from the beginning to define a student class.
The relationship between classes and subclasses is shown in Figure T2.6.

Polymorphism is the ability to send the same message to several different
receivers (objects) and have the message trigger the desired action. For exam-
ple, suppose that there are three classes of objects in a tuition-and-fee system:
in-state students, out-of-state students, and scholarship students. We must cal-
culate tuition and fees for all three types of student (classes) while noting that
the tuition and fees will differ for the three classes. Polymorphism allows us to
send the same “calculate tuition and fees” message to these three different
classes and have the correct tuition and fees calculated for each one.

Programming with OO. Building programs and applications using object-
oriented programming languages is similar to constructing a building using pre-
fabricated parts. The object containing the data and procedures is a program-
ming building block. The same objects can be used repeatedly, a process called
reusability. By reusing program code, programmers can write programs much
more efficiently and with fewer errors. Object-oriented programming languages
offer advantages such as reusable code, lower costs, reduced errors and testing,
and faster implementation times. Popular object-oriented programming languages
include Smalltalk, C��, and Java.

Smalltalk. Smalltalk is a pure object-oriented language developed at the
Xerox Palo Alto Research Center. The syntax is fairly easy to learn, being much
less complicated than C and C��.

FIGURE T2.6 Object classes, subclasses, inheritance, and overriding. (Source: © Courtesy of Apple Corporation.
Used with permission. All rights reserved.)

Employee (Class)
Name (Class variables)
Title

Print (Methods)

Contractor (Subclass of Employee)
Name
Title
Contract_number
Dollar_amount
Print

Paid weekly (Subclass of Employee)
Name
Title

Print
Make_weekly_paycheck

Hourly (Subclass of Paid weekly)
Name
Title
Hourly_wage
Hours_per_week
Print
Make_weekly_paycheck - OVERRIDE

Salaried (Subclass of Paid weekly)
Name
Title
Salary

Print - OVERRIDE
Make_weekly_paycheck - OVERRIDE

t02.qxd 01/25/2005 07:59PM Page T2.22 EQA

T2.4 PROGRAMMING LANGUAGES T2.23

C��. C�� is a direct extension of the C language, with 80 to 90 percent
of C�� remaining pure C.

The Unified Modeling Language (UML). Developing a model for complex
software systems is as essential as having a blueprint for a large building. The
UML is a language for specifying, visualizing, constructing, and documenting
the artifacts (such as classes, objects, etc.) in object-oriented software systems.
The UML makes the reuse of these artifacts easier because the language provides
a common set of notations that can be used for all types of software projects.

VISUAL PROGRAMMING LANGUAGES. Programming languages that are used
within a graphical environment are often referred to as visual programming lan-
guages. Visual programming allows developers to create applications by mani-
pulating graphical images directly, instead of specifying the visual features in
code. These languages use a mouse, icons, symbols on the screen, or pull-down
menus to make programming easier and more intuitive. Visual Basic and Visual
C�� are examples of visual programming languages.

Several languages exist specifically for the Internet. Most notable is HTML.

HYPERTEXT MARKUP LANGUAGE. The standard language the Web uses for cre-
ating and recognizing hypermedia documents is the Hypertext Markup Lan-
guage (HTML). HTML is loosely related to the Standard Generalized Markup
Language (SGML), which is a method of representing document-formatting lan-
guages. Languages such as HTML that follow the SGML format allow document
writers to separate information from document presentation. That is, documents
containing the same information can be presented in a number of different
ways. Users have the option of controlling visual elements such as fonts, font
size, and paragraph spacing without changing the original information.

HTML is very easy to use. Web documents are typically written in HTML
and are usually named with the suffix “.html.” HTML documents are standard
7- or 8-bit ASCII files with formatting codes that contain information about lay-
out (text styles, document titles, paragraphs, lists) and hyperlinks. The HTML
standard supports basic hypertext document creation and layout, as well as
interactive forms, and defined “hot spots” in images.

Hypertext is an approach to data management in which data are stored in
a network of nodes connected by links (called hyperlinks). Users access data
through an interactive browsing system. The combination of nodes, links, and
supporting indexes for any particular topic is a hypertext document. A hyper-
text document may contain text, images, and other types of information such
as data files, audio, video, and executable computer programs.

The World Wide Web uses Uniform Resource Locators (URLs) to repre-
sent hypermedia links and links to network services within HTML documents.
The first part of the URL (before the two slashes) specifies the method of access.
The second part is typically the address of the computer where the data or ser-
vice is located. A URL is always a single unbroken line with no spaces.

Dynamic HTML is the next step beyond HTML. Dynamic HTML provides
advances that include the following:

● It provides a richer, more dynamic experience for the user on Web pages,
making the pages more like dynamic applications and less like static content.
It lets the user interact with the content of those pages without having to

Web Programming
Languages and

Software

t02.qxd 2/16/05 10:39 AM Page T2.23 EQA

T2.24 TECHNOLOGY GUIDE SOFTWARE

download additional content from the server. This means that Web pages us-
ing Dynamic HTML provide more exciting and useful information.

● Dynamic HTML gives developers precise control over formatting, fonts, and
layout, and provides an enhanced object model for making pages interactive.

● It serves as the foundation for crossware, a new class of platform-independent,
on-demand applications built entirely using Dynamic HTML, Java, and
JavaScript. Netscape Netcaster, a component of Netscape Communicator, is
Netscape’s first crossware application.

Enhancements and variations of HTML make possible new layout and
design features on Web pages. For example, cascading style sheets (CSSs)are
an enhancement to HTML that act as a template defining the appearance or
style (such as size, color, and font) of an element of a Web page, such as a box.

XML. XML (eXtensible Markup Language) is optimized for document
delivery across the Net. It is built on the foundation of SGML. XML is a lan-
guage for defining, validating, and sharing document formats. It permits authors
to create, manage, and access dynamic, personalized, and customized content
on the Web—without introducing proprietary HTML extensions. XML is espe-
cially suitable for electronic commerce applications. Figure T2.7 compares HTML
and XML.

Java. Java is an object-oriented programming language developed by Sun
Microsystems. The language gives programmers the ability to develop applica-
tions that work across the Internet. Java is used to develop small applications,
called applets, which can be included in an HTML page on the Internet. When
the user uses a Java-compatible browser to view a page that contains a Java
applet, the applet’s code is transferred to the user’s system and executed by the
browser.

JavaScript. JavaScript is an object-oriented scripting language developed
by Netscape Communications for client/server applications. It allows users to
add some interactivity to their Web pages. Many people confuse JavaScript with
the programming language known as Java. There is no relationship between
these two programming languages. JavaScript is a very basic programming lan-
guage and bears no relationship to the sophisticated and complex language of
Java.

JavaBeans. JavaBeans is the platform-neutral component architecture for
Java. It is used for developing or assembling network-aware solutions for het-
erogeneous hardware and operating system environments, within the enterprise
or across the Internet. JavaBeans extends Java’s “write once, run anywhere”
capability to reusable component development. JavaBeans runs on any operating
system and within any application environment.

FIGURE T2.7 Comparison of HTML and XML.

English Text
MNGT 3070
Introduction to MIS
3 semester hours
Professor Smith

 HTML
<TITLE>Course Number</TITLE>
<BODY>

Introduction to MIS
3 semester hours
Professor Smith
</BODY>

 XML
<Department and course=”MNGT 3070”>
<COURSE TITLE>Introduction to MIS<COURSE TITLE>
<HOURS UNIT=”Semester”>3</NUMBER OF HOURS>
<INSTRUCTOR>Professor Smith<INSTRUCTOR>

t02.qxd 01/25/2005 07:59PM Page T2.24 EQA

T2.5 SOFTWARE DEVELOPMENT AND CASE TOOLS T2.25

ActiveX. ActiveX is a set of technologies from Microsoft that combines dif-
ferent programming languages into a single, integrated Web site. Before ActiveX,
Web content was static, two-dimensional text and graphics. With ActiveX, Web
sites come alive using multimedia effects, interactive objects, and sophisticated
applications that create a user experience comparable to that of high-quality
CD-ROM titles. ActiveX is not a programming language as such, but rather a
set of rules for how applications should share information.

ASP. ASP (Active Server Pages) is a Microsoft CGI-like (common gate-
way interface) technology that allows you to create dynamically generated Web
pages from the server side using a scripting language. Because ASP can talk to
ActiveX controls and other OLE programs, users can take advantage of many
report writers, graphic controls, and all the ActiveX controls that they may be
used to. ASP can also be programmed in VBScript or JavaScript, enabling users
to work in the language that they are most comfortable with.

Of the many other existing types of software, we present just a few.

DREAMWEAVER. DreamWeaver is an integrated development environment for
developing Web pages. Its good companion is Flash, which can produce sophis-
ticated animated graphics.

VIRTUAL REALITY MODELING LANGUAGE. The virtual reality modeling
language (VRML) is a file format for describing three-dimensional interactive
worlds and objects. It can be used with the Web to create three-dimensional
representations of complex scenes such as illustrations, product definitions, and
virtual reality presentations. VRML can represent static and animated objects
and it can have hyperlinks to other media such as sound, video, and image.

WEB BROWSERS. The major software tool for accessing and working with the
Web is the Web browser. It includes a point-and-click GUI that is controlled
via a mouse or some keyboard keys. Browsers can display various media and
they are used also to activate the hyperlinks. Microsoft’s Explorer is the major
browser.

E-MAIL. E-mail software, such as Qualcomm’s Eudora and Microsoft’s Outlook
Express, allows users to send and receive e-mail messages over the Internet.
By using these packages, users can organize and manage their e-mail messages.
These packages typically include an address book that stores frequently used
e-mail addresses. They also include blockers of unwanted mail and many other
features. E-mail software is usually free.

Other Software

T2.5 SOFTWARE DEVELOPMENT AND CASE TOOLS

Most programming today is done by taking a large process and breaking it down
into smaller, more easily comprehended modules. This method is commonly
described as top-down programming, stepwise refinement, or structured programming.

Structured programming models a system similar to a layered set of func-
tional modules. These modules are built up in a pyramid-like fashion, with each
layer a higher-level view of the system. Even with this approach, however,

t02.qxd 01/25/2005 07:59PM Page T2.25 EQA

T2.26 TECHNOLOGY GUIDE SOFTWARE

many systems have developed severe complexity. Thousands of modules with
crosslinks among them are often called “spaghetti code.” The ability to break a
programming job into smaller parts enables the deployment of special produc-
tivity tools, the best known of which is CASE.

Computer-aided software engineering (CASE) is a tool for programmers,
systems analysts, business analysts, and systems developers to help automate
software development and at the same time improve software quality.

CASE is a combination of software tools and structured software develop-
ment methods. The tools automate the software development process, while the
methodologies help identify those processes to be automated with the tools.
CASE tools often use graphics or diagrams to help describe and document sys-
tems and to clarify the interfaces or interconnections among the components
(see Figure T2.8). They are generally integrated, allowing data to be passed from
tool to tool.

CATEGORIES OF CASE TOOLS. CASE tools support individual aspects or stages
of the systems development process, groups or related aspects, or the whole
process. Upper CASE (U-CASE) tools focus primarily on the design aspects of
systems development, for example, tools that create data flow or entity-
relationship diagrams. Lower CASE (L-CASE) tools help with programming and
related activities, such as testing, in the later stages of the life cycle. Integrated
CASE (I-CASE) tools incorporate both U-CASE and L-CASE functionality and
provide support for many tasks throughout the SDLC.

CASE tools may be broken down into two subcategories: toolkits and work-
benches. A toolkit is a collection of software tools that automates one type of

FIGURE T2.8 A CASE
display.

Computer-Aided
Software

Engineering Tools

t02.qxd 01/25/2005 07:59PM Page T2.26 EQA

T2.5 SOFTWARE DEVELOPMENT AND CASE TOOLS T2.27

software task or one phase of the software development process. A CASE work-
bench is a collection of software tools that are interrelated based on common
assumptions about the development methodology being employed. A work-
bench also uses the data repository containing all technical and management
information needed to build the software system. Ideally, workbenches provide
support throughout the entire software development process and help produce
a documented and executable system.

CASE tools have several advantages:

● CASE improves productivity by helping the analyst understand the problem
and how to solve it in an organized manner.

● CASE facilitates joint application and design (JAD) sessions, resulting in bet-
ter interaction among users and information systems professionals.

● CASE makes it easier to create prototypes, so that users can see what they
are going to get at an early stage in the development process.

● CASE makes it easier to make system design changes as circumstances change.

Tasks that are repeated may be automated with CASE tools, for example,
drawing dataflow diagrams (a graphical technique for representing the system
under development) or drawing system charts. Effectiveness results from forc-
ing the developer to do the task in an organized, consistent manner as dictated
by the CASE tool.

Because most CASE tools are graphical in nature and have the ability to
produce working prototypes quickly, nontechnically trained users can partici-
pate more actively in the development process. They can see what the com-
pleted system will look like before it is actually constructed, resulting in fewer
misunderstandings and design mistakes.

Using CASE can help make revising an application easier. When revisions
are needed, one need only change specifications in the data repository rather
than the source code itself. This also enables prototype systems to be developed
more quickly and easily. Some CASE tools help generate source code directly,
and the benefits can be significant.

CASE tools also have disadvantages. A lack of management support for
CASE within organizations can be a problem. CASE is very expensive to install,
train developers on, and use properly. Many firms do not know how to meas-
ure quality or productivity in software development and therefore find it diffi-
cult to justify the expense of implementing CASE. In addition, the receptivity
of professional programmers can greatly influence the effectiveness of CASE.
Many programmers who have mastered one approach to development are
hesitant to shift to a new method.

Broadly speaking, there are two main approaches to systems development—
namely, a structured approach and an object-oriented approach. Similarly, CASE
tools have two broad types: One supports a structured approach (e.g., Visio-
2000 Systems Architect); the second supports an object-oriented approach (e.g.,
IBM’s Rational Rose, Borland’s Together, and Visual Paradigm).

Also, the insistence on one structured method in a CASE program is good
for standardization but can be stifling for creativity and flexibility. If an analyst
is in an organization that does not use a structured methodology to accompany
CASE, then the effectiveness of CASE will be greatly reduced. Creating software
often entails imaginative solutions to procedural problems; being constrained
to one methodology and the tools included in the CASE package can feel

t02.qxd 01/25/2005 07:59PM Page T2.27 EQA

T2.28 TECHNOLOGY GUIDE SOFTWARE

constricting. Finally, CASE tools cannot overcome poor, incomplete, or incon-
sistent specifications. Popular CASE tools are Oracle’s Designer/2000, Seer Tech-
nologies’ Seer*HPS, and Texas Instruments’ Composer. For a comprehensive list
of CASE tools see Table T2.3.

TABLE T2.3 The Major Tools of CASE

Category Comments

Analysis and design tools

Code or application generators

Prototyping tools

Programming language support

Testing tools

Problem-tracking tools

Change management/version control tools

Project management tools

Estimation tools

Documentation generators

Reverse engineering tools
Business process reengineering tools

● Create data flow, entity-relationship, etc. diagrams
● Generic, or specific to proprietary systems design methodologies
● Some convert specifications directly into code
● Often have drag-and-drop capabilities for developing applica-

tions and interfaces
● Screen and menu generators
● Report generators/4GLs
● Templates for common code sequences in specific languages
● Subroutine libraries for common functions
● Produce data for testing programs
● Monitor program execution
● Check systems analysis diagrams for completeness and consistency
● Identify responsibility for fixing bugs and track progress in solv-

ing them
● Repository of different versions of code, with “check out” and

“check in” capabilities
● Allow access only to authorized personnel
● Maintain information on changes between versions of programs
● Critical path method (PERT charts)
● Gantt charts
● Time and expense tracking
● Estimate personnel requirements and costs for systems devel-

opment projects
● Create flowcharts, other documentation for systems with poor

or no documentation
● Help restructure code in legacy systems
● Analyze and improve existing processes
● Design new processes

T2.6 SOFTWARE ISSUES AND TRENDS

The importance of software in computer systems has brought new issues and
trends to the forefront for organizational managers. These issues and trends
include software evaluation and selection, software licensing, software upgrades,
software defects, malware and pestware, open systems, open source software,
shareware, componentware, software piracy, services-oriented architecture, and
autonomic computing.

There are dozens or even hundreds of software packages to choose from for
almost any topic. The software evaluation and selection decision is a diffi-
cult one that is affected by many factors. Table T2.4 summarizes these selection

Software Evaluation
and Selection

t02.qxd 01/25/2005 07:59PM Page T2.28 EQA

T2.6 SOFTWARE ISSUES AND TRENDS T2.29

factors. The first part of the selection process involves understanding the organ-
ization’s software needs and identifying the criteria that will be used in making
the eventual decision. Once the software requirements are established, specific
software should be evaluated. An evaluation team composed of representatives
from every group that will have a role in building and using the software should
be chosen for the evaluation process. The team will study the proposed alter-
natives and find the software that promises the best match between the organ-
ization’s needs and the software capabilities. (Software selection becomes a
major issue in systems development and is discussed further in Chapter 14.)

Vendors spend a great deal of time and money developing their software prod-
ucts. To protect this investment, they must protect their software from being
copied and distributed by individuals and other software companies. A company
can copyright its software, which means that the U.S. Copyright Office grants
the company the exclusive legal right to reproduce, publish, and sell that
software.

The Software and Information Industry Association (SIIA) enforces soft-
ware copyright laws in corporations through a set of guidelines. These guide-
lines state that when IS managers cannot find proof of purchase for software,
they should get rid of the software or purchase new licenses for its use. A
license is permission granted under the law to engage in an activity other-
wise unlawful. The SPA audits companies to see that the software used is
properly licensed. Fines for improper software are heavy. IS managers are now
taking inventory of their software assets to ensure that they have the appro-
priate number of software licenses.

Although many people do so, copying software is illegal. The Software Pub-
lishers Association has stated that software privacy amounts to approximately
$15 billion annually. Types of software piracy include: “softlifting”; unrestricted

TABLE T2.4 Software Selection Factors

Factor Considerations

Size and location of user base

Availability of system
administration tools

Costs—initial and subsequent

System capabilities

Existing computing environment

In-house technical skills

Does the proposed software support a few users
in a single location? Or can it accommodate
large numbers of geographically dispersed
users?

Does the software offer tools that monitor
system usage? Does it maintain a list of
authorized users and provide the level of
security needed?

Is the software affordable, taking into account
all costs, including installation, training, and
maintenance?

Does the software meet both current and
anticipated future needs?

Is the software compatible with existing
hardware, software, and communications
networks?

Should the organization develop software
applications in-house, purchase off the shelf,
or contract software out of house?

Software Licensing

t02.qxd 01/25/2005 07:59PM Page T2.29 EQA

T2.30 TECHNOLOGY GUIDE SOFTWARE

client access; hard-disk loading; OEM piracy/unbundling; commercial use of
noncommercial software; counterfeiting; CD-ROM piracy; Internet piracy; sale
of overruns by manufacturing plants; and renting.

Software developers, failing to recoup in sales the money invested to
develop their products, are often forced to curtail spending on research and
development. Also, smaller software companies may be driven out of business,
because they cannot sustain the losses that larger companies can. The end result
is that innovation is dampened and consumers suffer. Consumers also pay
higher prices to offset the losses caused by software piracy.

Another association that was created to protect the interests of large soft-
ware developers is the Business Software Alliance (BSA). Any infringer is liable
to prosecution by the local government, and any person who gives the infor-
mation to report such crimes would get a reward from the BASA of up to
US$14,000 for each pirated software (bsa.org).

As the number of desktop computers continues to increase and businesses
continue to decentralize, it becomes more and more difficult for IS managers to
manage their software assets. As a result, new firms have sprouted up to spe-
cialize in tracking software licenses for a fee. Firms such as ASAP Software, Soft-
ware Spectrum, and others will track and manage a company’s software licenses,
to ensure that company’s compliance with U.S. copyright laws.

Another issue of interest to organizational management is software upgrades
(also known as software maintenance). Software vendors revise their pro-
grams and sell new versions often. The revised software may offer valuable
enhancements, or, on the other hand, it may offer little in terms of additional
capabilities. Also, the revised software may contain bugs.

Deciding whether to purchase the newest software can be a problem for
organizations and their IS managers. It is also difficult to decide whether to be
one of the first companies to buy and take strategic advantage of new software
before competitors do, but risk falling prey to previously undiscovered bugs.

Good software is usable, reliable, defect free, cost effective, and maintainable.
However, all too often, computer program code is inefficient, poorly designed,
and riddled with errors. In the last 15 years alone, software defects have
wrecked a European satellite launch, delayed the opening of Denver Interna-
tional Airport for a year, and destroyed a NASA Mars mission. In another exam-
ple, on the same day that Microsoft first released Windows XP, the company
posted 18 megabytes of patches on its Web site: bug fixes, compatibility updates,
and enhancements.

With our dependence on computers and networks, the risks are getting
worse. According to the Software Engineering Institute (SEI), professional
programmers make on average 100 to 150 errors in every thousand lines of
code they write. Using SEI’s figures, Windows XP, with its 41 million lines of
code, would have over 4 million bugs. The industry recognizes the problem, but
the problem is so enormous that only initial steps are being taken. One step is
better design and planning at the beginning of the development process.

On many computers one can find software that is running without the knowl-
edge of the computers’ owners. Such types of software is known as malware or
pestware. It is installed by vendors who want to find information about you. A

Software Upgrades

Software Defects

Malware and
Pestware

t02.qxd 2/16/05 10:39 AM Page T2.30 EQA

T2.6 SOFTWARE ISSUES AND TRENDS T2.31

well-known type of such software is spyware (see Chapter 15). These types of
software use up valuable resources and can slow down your computer. The U.S.
government is introducing a bill, known as the Spy Act, to combat the prob-
lem. Use of products such as Ad-aware, PestPatrol, or SpySweeper at least once
a week will protect your computer by deleting spyware. (You can get such pro-
tective software for free.)

The concept of open systems refers to a model of computing products that
work together. Achieving this goal is possible through the use of the same oper-
ating system with compatible software on all the different computers that would
interact with one another in an organization. A complementary approach is to
produce application software that will run across all computer platforms. If hard-
ware, operating systems, and application software are designed as open systems,
the user would be able to purchase the best software for the job without wor-
rying whether it will run on particular hardware. As an example, much Apple
MacIntosh application software would not run on Wintel (Windows-Intel) PCs,
and vice versa. Neither of these would run on a mainframe.

Certain operating systems, like UNIX, will run on almost any machine.
Therefore, to achieve an open-systems goal, organizations frequently employ
UNIX on their desktop and larger machines so that software designed for UNIX
will operate on any machine. Recent advances toward the open-systems goal
involve using the Java language, which can be run on many types of comput-
ers, in place of a traditional operating system.

Open systems should not be confused with open source software. Open source
software is software made available in source code form at no cost to devel-
opers. There are many examples of open-source software, including the GNU
(GNU’s Not UNIX) suite of software (gnu.org) developed by the Free Software
Foundation (fsf.org); the Linux operating system; Apache Web server (apache
.org); sendmail SMTP (Send Mail Transport Protocol) e-mail server (sendmail.org);
the Perl programming language (perl.com); the Netscape Mozilla browser
(mozilla.org); and Sun’s StarOffice applications suite (sun.com).

Open source software is, in many cases, more reliable than proprietary soft-
ware. Because the code is available to many developers, more bugs are discov-
ered, are discovered early and quickly, and are fixed immediately. Support for
open source software is also available from companies that provide products
derived from the software, for example, Red Hat for Linux (redhat.com). These
firms provide education, training, and technical support for the software for a fee.

Linux has been used to create the astounding effects for the movie `Lord of
the Rings’. More than 200 workstations and 450 dual-processor servers run on
Red Hat Linux 7.3 to identify system resources and distribute rendering jobs like
shadows and reflections, across idle processors to speed up scene creation.

If Linux is to become an enterprise-class operating system, it needs to be
developed and tested with enterprise-class machines. The Linux developer com-
munity has always had the know-how but not the hardware resources. Open
Source Development Lab (OSDL) solves this problem. It provides an inde-
pendent Linux software development laboratory where developers can create
and test applications that run on high-end servers.

Open source code is becoming a corporate building block. Some companies
have already taken the steps to transition to use open source software like

Open Systems

Open Source
Software

t02.qxd 2/16/05 10:39 AM Page T2.31 EQA

T2.32 TECHNOLOGY GUIDE SOFTWARE

Apache Web Server, FastCGI scripting language, FreeBSD or Linux operating
system, Zope application server, OpenNMS, Velocity, MySQL, InterBase, Post-
greSQL database, Enhydra, Tomcat, and Samba file integration system. Other
examples are: Apple’s Davinports at 2000; IBM’s Derby Cambas’s development
platform; Mono’s development platform; php; Open Office; Firefox; BEA’s Bee-
hive; and several other applications (http://osdir.com/Downloads.phtml). One rea-
son for this is the new programmers find it very difficult to follow what the
previous programmers have done if they do not use open source software.
Another reason is outage rate of open source is lower than the proprietary code.
Besides, open source code receives enthusiastic cooperation from some of the
largest software vendors like IBM and Oracle. In terms of security and stability,
open source code is better because many people can search its problem that hid-
den problems can be eradicated earlier than those of the proprietary code.
In addition to this, some entrepreneurs are afraid of being locked in by the
proprietary code.

Open source software is produced by vendors but is often produced by
groups of volunteers. It is normally distributed for little or no cost by distribu-
tors who hope to make money by providing training, consulting work, add-on
products, and custom software. Initially, it was perceived as unreliable and not
a viable alternative to proprietary software produced by large firms with a strong
reputation and with significant financial and people resources. Linux has bro-
ken this perception rule that has proven this by using open source software;
companies can save significant money without compromise on quality, support
and future enhancements.

A recent study has concluded that Linux Web servers are not just cheaper
to install but also cheaper to run and support. In comparing the total costs of
ownership (TCO) of Linux web servers and Microsoft-based web servers, the
largest cost component is typically people’s time. Linux has lower cost and
shorter life cycles for their servers than Microsoft’s. Although Linux has not only
reached maturity as a web platform, it offers the potential of significant savings.
In the area of e-business, open source web software is mature and has even
become the de facto solution for many companies. In terms of training costs,
open source alternatives win over Microsoft’s.

There are positives and negatives of the success of open source software.
Positives include quality and reliability, the rapid release schedules of projects
and the reduced costs of development and ownership. The negatives are that it
is an over-hyped strategy employed by the weak to compete with the strong.
In terms of security, open source can enable developers to find the bugs or vul-
nerabilities in their programs. On the negative side, open source may allow
hackers to know about the weaknesses or loopholes of the software more eas-
ily than closed-source software.

There is also disagreement from the research firms: IDG found that Linux
was growing from strength to strength in Asia but Gartner Group found that
Linux shipments to Asia remain very tiny and the little growth rate cannot
threaten Microsoft’s dominance.

Openness has taken a great stride forward. W3C has recently issued a new
draft of its patented policy recommending that patented technologies be allowed
only in Web standards when royalty-free. On the other hand, Microsoft
announced that they would document and allow free use of its Windows 2000
Kerberos extensions. Sun has also taken similar step by undergoing a major

t02.qxd 2/16/05 10:39 AM Page T2.32 EQA

T2.6 SOFTWARE ISSUES AND TRENDS T2.33

revision on the agreement on how third parties must implement Java stan-
dards.

Shareware is software where the user is expected to pay the author a modest
amount for the privilege of using it. Freeware is software that is free. Both help
to keep software costs down. Shareware and freeware are often not as power-
ful (do not have the full complement of features) as the professional versions,
but some users get what they need at a good price. These are available now on
the Internet in large quantities (download.com). A deficiency of such software is
the possible introduction of viruses or spyware. Some popular packages are:
WinZip, Adobe Reader, Mozilla, Zero Pop-up, KaZaa, and Ad-ware.

Usually, free software has never been better or more abundant while mak-
ers of free applications are alluring users toward paid versions of the software,
which has many added features. However, features of some free software are
found sufficient to cater to simple office work. Note that free software may be
less secure and easy to be attacked by viruses and spyware. For further discus-
sion, see pcworld.com (March 2002, p. 87).

Componentware is a term used to describe a component-based software
development approach. Software components are the “building blocks” of
applications. They provide the operations that can be used by the application
(or other applications) again and again. Any given application may contain
hundreds of components, each providing specific business logic or user-interface
functionality. Consider a database application as an example: The data-entry
screen may contain several user-interface components for providing buttons,
menus, list boxes, and so forth. There may also be business logic components
to perform validation or calculations on the data, as well as components to
write the data to the database. Finally, there can be components to create
reports from the data, either for viewing in an on-screen chart or for printing.
Component-based applications enable software developers to “snap together”
applications by mixing and matching prefabricated plug-and-play software
components.

As discussed earlier, the issue of software piracy is critical to the advancement
of software and the ability to innovate and improve software. According to the
Business Software Alliance, the damage to the industry from illegal copying of
software is about $20 billion a year. For a discussion, see Chapter 16.

Services-oriented architecture (SOA) is a framework for constructing and interlink-
ing a company’s back-end systems in order to make the computing systems
more flexible and cost-effective. SOA communications, enabled by Web Services,
are different from existing middleware. Under SOA and Web Services, applica-
tions automatically link to one another as needed, which is the concept of “loose
coupling.” (See Technology Guide 6 for further discussion.)

As systems become more interconnected and diverse, systems architects are less
able to anticipate and design interactions among components. Autonomic
computing refers to computing systems that can manage themselves given
high-level objectives from administrators. It gets its name from the autonomic
nervous system that governs our heart rate and body temperature, thus freeing

Shareware
and Freeware

Componentware

Software Piracy

Services-Oriented
Architecture (SOA)

Autonomic
Computing

t02.qxd 2/16/05 10:39 AM Page T2.33 EQA

T2.34 TECHNOLOGY GUIDE SOFTWARE

our conscious brain from the burden of dealing with these and many other low-
level functions. An autonomic computing system consists of myriad interacting,
self-governing components that in turn comprise large numbers of interacting,
autonomous, self-governing components at the next level down.

REFERENCES
Babcock, C., “New Tools Unleash Power of Linux Clusters,” Inter-
active Week, November 6, 2000.

Babcock, C., “Open Source Code Is Becoming a Corporate Build-
ing Block,” Interactive Week, May 14, 2001.

Barker, J., Beginning Java Objects: From Concepts to Code. Birming-
ham: Wrox Press, 2000.

Berr, J., “AOL, Microsoft, Yahoo Band to Block Spam,” Honolulu
Advertiser, April 29, 2003.

“Best-Practice Case Studies—UPS for Parcel Shipment and Track-
ing,” mobileinfo.com/Case_Study/ups.htm, 2001.

Booker, E., “Better Java,” Internet Week, February 16, 1998.

Burns, J., “So, You Want ASP, Huh?” Datamation, September 24,
1998.

Burns, J., “Java vs. JavaScript: So… What Is the Difference Be-
tween Java and JavaScript Anyway?” Datamation, January 3,
2000.

Cortese, A., et al., “The Software Revolutions,” Business Week, De-
cember 4, 1995.

Courter, G., and A. Marquis, “Mastering Microsoft Office 2000:
Premium Edition,” Sybex, July 1999.

Dahl, E., “Fee vs/. Free Software,” PCWorld, March 2002.

Dallas, D.A., “Information Systems Executive Journal,” Linux: A
Cost-Effective Alternative to Windows, Spring 2002.

Deckmyn, D., and J. Vijayan, “Linux Applications Make Leap to
Unix,” Computerworld, August 21, 2000.

Dick, K., XML: A Manager’s Guide. Reading, MA: Addison-Wesley,
2000.

Doke, E. R., and B. C. Hardgrave, An Introduction to Object COBOL.
New York: Wiley, 1998.

Dorfman, M., and R. H. Thayer, Software Engineering. Los Alamits,
CA: IEEE Computer Society Press, 1996.

Fayad, M., and M. P. Cline, “Aspects of Software Adaptability,”
Communications of the ACM, No. 10, October 1996.

Feibus, A., “A Garden of Visual Delights,” Information Week, July 1,
1996.

Foley, J., “Information Week,” Internet Week, Mar 13, 2003.

Gaudin, S., “ActiveX,” ComputerWorld, August 10, 1998.

Grimes, B., “Linux Goes to the Movies,” PC Magazine, May 27,
2003.

Grossman, L., “The Browser That Roared,” Time, May 13, 2002.

Katz, H., ed., Technology Forecast: 1998 (also 1999, 2000). Menlo
Park, CA: Price Waterhouse World Technology Center, 1998, 1999,
2000.

Kephart, J., and D. M. Chess, “The Vision of Autonomic Comput-
ing,” IEEE, January 2003.

Korson, T., and V. Vaishnave, “Managing Emerging Software Tech-
nologies: A Technology Transfer Framework,” Communications of
the ACM, Vol. 35, No. 9, September 1992.

LaMonica, M., “Services-Oriented Architecture Gains Support,”
CNET News.com, April 1, 2004.

Leganza, G., “Top-Down versus Bottom-Up: Approaches to Enter-
prise Architecture,” www.forrester.com, March 29, 2004.

Lewin, J., “Linux Cheaper than Windows for Web Serving,”
ITWorld.com.

McDonald, A. B.,“The Next Best Thing to Being There,” PCWorld,
April 2002.

“Occasional Maintenance,” PCWorld, May 2002.

“Open Source Software: Investigating the Software Engineering,
Psychosocial, And Economic Issues,” Information Systems Journal,
2001, pp. 273–276.

PCWorld.com, “Features Comparisons—Free and Paid Software,”
March 2002: p. 87.

Pont, M. J., Software Engineering with C�� and CASE Tools. Reading,
MA: Addison-Wesley, 1996.

Reed, D. A., “Grids, the TeraGrid, and Beyond,” IEEE, 2003.

Rupley, S., “Apple’s Next Moves,” PC Magazine, June 30, 2002.

Shelly, G. B., et al., Microsoft Windows 2000: Complete Concepts and
Techniques. Cambridge, MA: Course Technology Inc., 2000.

Simonds, C., “Software for the Next-Generation Automobile,”
IEEE, November/December 2003.

Smith, S., “The Whiteboard Goes Digital,” LAPTOP, May 2003.

Spanbauer, S., “Linux Bulks Up,” Business2.com, November 28,
2000.

“3-D Technology Gives HMV.com Shoppers `Sneak Peek’ into New
Music Releases,” Stores October 2001.

Test Center, “Sophisticated Simplicity–Oracle Database 10g
Stresses Easier Administration,” Infoworld, March 22, 2004.

Titchenell, D., Getting Started with HTML. Fort Worth,TX: Dryden
Press, 1999.

von Hippel, E., “Learning from Open-Source Software,” MIT
SLOAN Management Review, Summer 2001.

Wallace, N., “ActiveX Template Library Development With Visual
C�� 6.0,” Wordware Publishing, May 1999.

“Welcome Steps Toward Openness,” eWeek, March 18, 2002.

Welsh, M., et al., “Running Linux,” O’Reilly & Associates, August
1999.

Wills, C., “Firms Scheme to Phase Out Bios, with Battle to Boot,”
Technology Post, February 25, 2003.

t02.qxd 2/16/05 10:39 AM Page T2.34 EQA

